วันพุธที่ 12 กรกฎาคม พ.ศ. 2560

ฟังก์ชันค่าสัมบูรณ์

เรื่องฟังก์ชันค่าสัมบูรณ์

  1. 1. ฟังก์ชันค่าสัมบูรณ์
  2. 2. ฟังก์ชันเชิงเส้น การนำกราฟไปใช้ในการแก้สมการและอสมการ กราฟของฟังก์ชันกำลังสอง การแก้ปัญหาโดยใช้ความรู้เรื่องฟังก์ชันกำลังสองและกราฟ ฟังก์ชันเอกซ์โพเนนเชียล ฟังก์ชันค่าสัมบูรณ์ ฟังก์ชันขั้นบันได ฟังก์ชันกำลังสอง ฟังก์ชันหนึ่งต่อหนึ่ง ฟังก์ชันจาก A ฟังก์ชันทั่วถึง ฟังก์ชัน 2. ลักษณะของฟังก์ชัน 1. ความหมายฟังก์ชัน 3. ชนิดของฟังก์ชัน
  3. 3. คือ ฟังก์ชันที่อยู่ในรูป เมื่อ a และ c เป็นจำนวนจริง ฟังก์ชันค่าสัมบูรณ์ ตัวอย่างที่ 1 ให้ เขียนกราฟของฟังก์ชัน ได้ดังนี้ 3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3 y x
  4. 4. x < 0 และ x มีค่าน้อยลง และ จากกราฟจะเห็นว่า เมื่อ x = อ่านเพิ่มเติม

ฟังก์ชันเอกซ์โพดเนนเชียล

ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไรอ่านเพิ่มเติม

ฟังก์ชั่นเชิงเส้น


ฟังก์ชันเชิงเส้น (
Linear function)   

กราฟของฟังก์ชั่นเหล่านี้เป็นเส้นตรงที่ไม่ขนานกับแกน ฟังก์ชั่นเชิงเส้น f(x) = ax+b เมื่อ a=0 จะได้ฟังก์ชั่นอยู่ในรูป f(x) = b ฟังก์ชั่นนี้มีชื่อเรียกเฉพาะว่า ‘‘ ฟังก์ชั่นคงตัว ’’ (Constant function) กราฟของฟังก์ชั่นคงตัวจะเป็นเส้นตรงที่ขนานกับแกน x อ่านเพิ่มเติม



บทที่4 ความสัมพันธ์เเละฟังก์ชัน

บทที่ 4 ความสัมพันธ์และฟังก์ชัน

        ในชีวิตประจำวันจะพบสิ่งที่มีความเกี่ยวข้องกันอยู่เสมอ  เช่น  สินค้ากับราคาสินค้าคนไทยทุกคนจะต้องมีเลขประจำตัวประชาชนเป็นของตนเอง  ตัวอย่างที่กล่าวมาเป็นตัวอย่างที่แสดงความสัมพันธ์ขออ่านเพิ่มเติม


ค่าสัมบูรณ์ของจำนวนจริง

ค่าสัมบูรณ์ของจำนวนจริง

ค่าสมบูรณ์ของจำวนจริง a : เมื่อกำหนดให้ a เป็นจำนวนจริงระยะจากจุด 0 ถึงจุดที่แทนที่จำนวนจริง a เขียนแทนด้วย |a|
เช่น |2| หมายถึง ระยะจากจุด 0 ถึงจุดที่แทนจำนวน 2 ซึ่งเท่ากับ 2 หน่วย
|-2| หมายถึง ระยะจุด 0 ถึงจุดที่แทนจำนวน -2 ซึ่งเท่ากับ 2 หน่วย

สรุปเป็นกรณีทั่วไป เมื่อ a เป็นจำนวนจริงใด ๆ ได้ดังนี้
|a| = a เมื่อ a > 0
|a| = a เมื่อ a = 0
|a| = -a เมื่อ a < 0 อ่านเพิ่มเติม

การไม่เท่ากัน

สมบัติการเท่ากันและการไม่เท่ากัน

การเท่ากันของจำนวนจริง
การเท่ากันของจำนวน เราใช้ “ = ” แทนการเท่ากัน เช่น
1 + 2 = 3 ; 6 x 2 = 12
5 – 3 = 2 ; 24 ÷ 3 = 8



บทที่3 จำนวนจริง


จำนวนจริง
 
     • 
ระบบจำนวนจริง
     จากแผนผังแสดงความสัมพันธ์ของจำนวนข้างต้น จะพบว่า ระบบจำนวนจริง จะประกอบไปด้วย
     1. จำนวนอตรรกยะ หมายถึง จำนวนที่ไม่สามารถเขียนให้อยู่ในรูปเศษส่วนของจำนวนเต็ม หรือทศนิยมซ้ำได้ ตัวอย่างเช่น 2 , √3, √5, -√2, - √3, -√5 หรือ ¶ ซึ่งมีค่า อ่านเพิ่มเติม